Nervous System Recovery Autonomic Balance

CLINKED FIT®

- Director: Linked Fit
- Adjunct Faculty: Oakland
 Community College
- Michigan Advisory Board Member: NSCA
- Academic Advisory
 Board Member: Maryville
 University
- Research Assistant:
 RMUoHP

Dane Bartz, MS, CSCS

- **BS**: Exercise Science
- MS: Exercise Physiology & Adult Fitness
- **PhD(c)**: Human & Sport Performance

What will be discussed?

Fatigue & Stress Autonomic Nervous System Heart Rate Variability Application

Training is not linear, it is abrupt.

Unknown

Abrupt system changes due to minor disturbances are not linear, but non-linear.

Ernst, 2017

SNS & PSN

Both branches of the ANS work together in harmony to regulate heart rate and heart rate variability (HRV) in order to optimize heart output in situational events.

10

SNS is required to mobilize resources and prime for performance

PNS can hinder activity and performance by diminishing the SNS to properly activate

66

The heart is a prime target of autonomic innervation.

3 Primary Systems

Nervous System

kubios

Respiratory Sinus Arrhythmia (RSA)

During expiration

- Diaphragm relaxes and moves upward
- Chest cavity size decreases

HRV DATA

Time Domains vs. Frequency Domains

Time Domain

Signal change over time and calculates the amount of variability in the heart beat.

Mean RR Interval

Overall average of the RR intervals during a reading.

rMSSD

Square root of the mean of the squared differences of consecutive RR intervals.

SDNN

Standard deviation of the RR intervals.

In(rMSSD)

Natural logarithm applied to rMSSD for easier analysis.

Frequency Domain

Analysis of the measurement signal with respect to frequency.

Low Frequency Frequency band: 0.04 to 0.15 Hz SNS & PNS

High Frequency Frequency band: 0.15 to 0.40 Hz PNS

Total Power

Signal power intensity in frequency domain with the given measurement.

Average **59.09**

Elite HRV Application Users

7:55 PM < Details Feb 4, 2019 - 1:46 PM - 02:21 > < 0 HRV Time-Domain Results Mean RR interval: 774 ms rMSSD: 110.69 ms In(rMSSD): 4.71 ms SDNN: 116.14 ms PNN50: 29% NN50: 55 7 Day HRV CV: N/A HRV Frequency-Domain Results 0

Total Power: 1,805.86 ms² LF* (Low Frequency Power): 684.23 ms² HF (High Frequency Power): 1,121.63 ms² LF/HF ratio*: 0.61

*Recent research shows measurements longer than 4 minutes are peopled for confident LE and LE/HE results

Pre-Training HRV

Time Domain

Mean RR Interval = 774 ms rMSSD = 110.69 ms SDNN = 116.14 ms ln(rMSSD) = 4.71 ms

Frequency Domain

Low Frequency = 684.23 ms² High Frequency = 1,121.63 ms² Total Power = 1,805.86 ms²

24

erizon 🗢	7:54 PM	@ 39% 🗖
	Details	
F	eb 4, 2019 - 2:25 PM - 02:31	>
IRV Tim	e-Domain Results	0
/lean RR interval : 488 ms		
MSSD: 9.57 ms		
n(rMSSD): 2.26 ms		
SDNN: 30.79 ms		
PNN50: %		
NN50 : 0		
Day HRV CV: N/A		
IRV Free	quency-Domain Results	0

Total Power: 943.90 ms² LF* (Low Frequency Power): 862.37 ms² HF (High Frequency Power): 81.53 ms² LF/HF ratio*: 10.58

*Recent research shows measurements longer than 4 minutes are needed for confident LF and LF/HF results

EXIT

% 🔳

>

Post-Training HRV

Time Domain

Mean RR Interval = 488 ms rMSSD = 9.57 ms SDNN = 30.79 ms ln(rMSSD) = 2.26 ms

Frequency Domain

Low Frequency = 862.37 ms² High Frequency = 81.53 ms² Total Power = 943.90 ms²

72 - 35 = 37

Time Domain:

Mean RR Interval = 286 ms reduction rMSSD = 101.12 ms reduction SDNN = 85.35 ms reduction

Frequency Domain:

LF = 178.14 ms² increase HF = 1,040.1 ms² decrease Total Power = 861.96 ms² decrease

PRACTICAL APPLICATION

How can professionals help regulate HRV with clients/athletes?

Baseline HRV recordings are needed!

1 week of recordings

Morning

or Pre-Training

Parasympathetic Activation

~Active Recovery~

30

Pre-Training Measurement

High

Higher than average = Time Domains High = High Frequency

Low = Low Frequency

Lower than average = Time Domains Low = High Frequency

Medium

High = Low Frequency

Low

Significantly lower than average = Time Domains Low = High Frequency High = Low Frequency

31

STEPPING UP

Individuals need to develop coherence.

66

The quality of being <u>logical</u> and <u>consistent</u>.

Software & Applications

36

THANK YOU!

Host: Renée Hoppe, MS, CSCS

References

- Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., ... Molen, M. W. (1997) Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology, 34(6), 623-648.
- Buckthorpe, M, Pain, M. T. G., & Folland, J. P. (2014) Central fatigue contributes to the greater reductions in explosive than maximal strength with high-intensity fatigue. Experimental Physiology, 99(7), 964-973.
- Ernsberger, U., & Rohrer, H. (2018). Sympathetic tales: subdivisions of the autonomic nervous system and the impact on developmental studies. Neural Development, 13(20), 1-21.
- Ernst, G. (2017). Heart-rate variability more than heart beats? Frontiers in Public Health, 5(240), 1-12.
- Figueiredo, D. H., Figueiredo, D. H., Moreira, A., Goncalves, H. R., & Stanganelli, L. C. R. (2019). Effects of overload and tapering on individual heart rate variability, stress tolerance, and intermittent running performance in soccer players during a preseason. The Journal of Strength and Conditioning Research, 0(0), 1-10.
- Grgic, J., Mikulic, P., Podnar, H., & Pedisic, Z. (2017). Effects of linear and daily undulating periodized resistance training programs on measures of muscle hypertrophy: a systematic review and meta-analysis. PeerJ, 5, 1-20.
- Haff, G., & Triplett, T. (2016). Essentials of strength training and conditioning. 4th edition. NSCA: Human Kinetics.
- Koenig, J., Jarczok, M. N., Ellis, R. J., Hillecke, T. K., & Thayer, J. F. (2019). Heart rate variability and experimentally induced pain in health adults: A systematic review. European Journal of Pain, 1-14.
- Pertab, J. L., Merkley, T. L., Cramond, A. L., Cramond, L., Paxton, H., & Wu, T. (2018).
 Concussion and the autonomic nervous system: An introduction to the field and the results of a systematic review. NeuroRehabilitation, 42, 397-427.
- Slults-Kolehmainen, M. A., & Bartholomew, J. B. (2012) Psychological stress impairs short-term muscular recovery from resistance exercise. Medicine & Science in Sports & Exercise, 12, 2220-2227.